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ABSTRACT 

LBL-10713 

A back-projection of filtered projection (BKFIL) reconstruction 

algorithm is presented that is applicable to single-photon emission 

computed tomography (ECT) in the presence of a constant attenuating medium 

such as the brain. The filters used in TCT ~comprised of a ramp multiplied 

by window functions -·are modified so that the single-photon ECT filter is 

a function of the constant attenuation coefficient. The filters give 

good reconstruction results with sufficient angular and lateral sampling. 

With continuous samples the BKFIL algorithm has a point spread function 

that is the Hankel transform of the window function. The resolution and 

s tistical properties of the filters are demonstrated by various simula-

tions. Statistical formulas for the reconstructed image show that the 

square of the percent-root~mean square uncertainty (%RMS) of the recon­

struction is inversely proportional to the total measured counts. The 

results indica that constant attenuation can be compensated for in 

single-photon ECT by using an attenuation-dependent filter that reconstructs 

the transverse section reliably. Computer time requirements are two times 

that of conventional TCT or positron ECT and there is no increase in 

memory requirements. 
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I. INTRODUCTION 

There are important fundamental differences between the reconstruction 

problem for the determination of the location and intensity of emission 

sources and the problem of conventional x-ray transmission computed 

tomography (TCT) wherein the attenuation coefficient is sought. In TCT 

the source position as well as the source strength is precisely known from 

the geometry of the x-ray TCT device and from source strength measurements. 

The ratio of detected photons to the measured source strength for each 

position of a TCT scan gives the projection of attenuation coefficients. 

However, in emission computed tomography (ECT), there is no a pr>ior>i 

knowledge of the source strength and position; indeed, it is the source 

strengths and distributions that are being sought in the ECT problem. The 

additional unknown needed to solve the problem is the attenuation coeffi­

cient distribution. The detected information from various angles in the 

ECT problem is represented as projections of the source strengths and 

distributions. The attenuated Radon transform A~ [1],[2] maps the source 

distribution p into the projection p (A~:p + p) where 

r<~.e) j p(r) exp[- j ~<~'Hi(~ -<E' .~ > )d:'] o(~- <E·~ >)dE 
]R2 

I 1 1) <r,e>;;;.<r,e 
<v "V I'V ~ ( 1 ) 

r"' (x,y), e (-sine,cose) and e1 
= (cose,sine) as shown in Fig. 1. 

If ~ is constant over a convex set, these projections can be modified so 

that they correspond to the projections 

pCC8) ( 2) 
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which define the mapping AJJ:p + p. For TCT, the exponential term 

disappears and the resultant projection operation is known as the Radon 

transform [3]. 

The object of ECT is to implement an inverse of the attenuated 

Radon transform. This paper will present methods of implementing the 

inverse for constant attenuation with emphasis on a rapid algorithm that 

is nearly as fast as the conventional convolution method [4]~[5],[6],[7]. 

The general theory on which this paper is based is outlined below. 

An approximation to the inverse attenuated Radon transform for 

constant attenuation coefficient can be implemented by a modification of 

the projection data with a special convolver which differs from the 

conventional convolution function for TCT in that the ECT convolution 

function is a function of the attenuation coefficient. The conventional 

reconstruction technique in TCT modifies projections by a ramp filter 

rolled off by a window function to reduce noise artifactso The second 

step in TCT is to back~project the modified projections. The point 

spread function of this linear reconstruction method is given as: 

(3) 

\11/here B is the back-projection operator and c
0 

is the convolution function. 

Thus. the reconstructed image is the convolution of the point spread 

function h
0 

with the true image distribution 

p "' h '"* p 0 
(4) 

The Fourier transform of the convolution function can be represented as a 

function of the frequency f and is equal to the product of the window 
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function w(f), and a ramp function If/: 

/fl w (f) 
0 

(5) 

The optimum window is a function of resolution and noise for TCT. For 

ECT, a special window can be derived based on the attenuation coefficient 

as well as resolution and noise. Thus, the reconstructed image in ECT 

can be represented as 

(6) 

~ 

where the fi 1 ter c11 is a function of attenuation coefficient, and the 

back-projection operator B
11 

operates on the function g and is defined 

as B :g + b [8], where p -

2rr 

b (r) 

1 
-p ( r ,e > 

g(< !>~>,e) e ~ ~ d8 (7) 

The reconstruction method in (6) is known as the back-projection of the 

filtered projection algorithm (BKFIL) [7]. The reconstructed image is 

related to the true image as in (4) by the point spread function 

(8) 

The determination of the appropriate filter function with its corresponding 

point spread function is the major theme of this paper. The filter func­

tion is comprised of a window and a ramp filter: cp = £r,[c1J] = /f/wp. 

(See also [9].) These window functions are relaterl to the point 

spread function by the Hankel transform 



-4-

00 

hll(r) = 2nJ 2wll([s 2 +ll 2 /4n 2 ]~) J
0

(2nrs)ds 

0 

(9) 

The relationship between the point spread function and different window 

functions will be shown in detail. The overall objective is to derive window 

functions that, for a given constant attenuation coefficient magnitude, 

will provide maximum resolution with minimum noise amplification. 

Prev·ious anaolyses of the attenuation problem in emission computed 

tomography using single-photon data have been presented in [1],[2],[7]-[16]. 

Methods for positron tomography are simpler than those for single-photon 

tomography and are discussed elsewhere [11],[17]-[19]. 

This article first discusses the method of modifying the attenuated 

Radon transform to render it independent of detector geometry and attenuation 

distribution. The attenuated back-projection operator is presented and a 

mathematical derivation of the point spread function for the BKFIL algorithm 

is given using this back-projection operator. Next, the analytical formulas 

for various window, filter. and convolution functions are given, and the 

influence of the window function and the magnitude of the attenuation 

coefficient on noise and resolution is characterized. Then statistical 

formulas for the filtering methods are developed and simulations of the 

BKFIL algorithm are given for data with various noise characteristics. 

II. THE MODIFIED PROJECTIONS 

In this section we will derive the modified attenuated Radon transform 

in (2) from the general transform given in (1), The purpose of modifying 

the measured projection data is to enable one to derive a general method 

of reconstructing attenuated projection data. This modification applies to 



any source distributed within a constant attenuator whose extent can be 

represented as a convex set. 

Using the rotated coordinates (see Fig. 1): 

x = ~cose - ~sine 

y = ~sine + ~cose ( 10) 

the equation in (1) which defines the attenuated Radon transform A~ can 

rewritten as 

where 

co 

p(t;,e) = J p(z;cose- ~sine, ~sine+ t;cose) a(t;.~~e)ds; (11) 

-co 

00 

a(z,;,~,e) "" exp [-j ~(~'cose - ~;sine, ~'sine+ ~cose) dz,;']. (12) 
c; 

If v is constant over the convex region n and zero elsewhere, as shown in 

Fig. 29 then the attenuation factor in ( 12) can be simplified: 

S(t;,e) 
-vB(t;,e) [ -J vdc;' J 

vs 
a(c;;,t;,e) "' exp :::: e e ( l3) 

(; 

If the source distribution p is zero outside n, then the projections in 

(n) are 

00 

vc: -vB(t;,e) 
t;sine,c;sine + t;cose) e dz; e . (14) p(t;,e) - J p(c;cose 

Multiplying both sides of (14) by e-vS(t;.e) modifies the measured 

projections p(~.e) so that the modified projections p(~,e) in (2) are 

obtained from p using 
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p( ) 

XBL803-3188 

Fig. 1. Single-photon emission computed tomography. At the rotation 
angle e and lateral sampling ~. the detector will see those photons that 
travel along the line ~ - <r,~> = 0 and are not attenuated by body tissue. 



Detector 

ycos = 0 

XBL803-3187 

Fig. 2. Correction factor for the modified projections. If the attenuation 
coefficient v is constant over the convex set n. then the measured projec­
tions p(~,e) are modified to give p(~.e) = evB(~.e)p(~,e) where B(~.e) 
is the nearest point to the detector of the intersection of 
~+xsine- ycose = 0 and the set n. 



vs(;.e) 
p(~,e) = p(~.e) e 
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00 

f 
w,; 

~ p(~cose - ~sine.~sine + ;cose) e d' . 
_oo (15) 

This integral is equivalent to the integral in (2) and is another way of 

defining the mapping A11 :p ~ p for the constant attenuated Radon transform 

A
11

• If p(;.e) are the measured projections, then the reconstruction algo­

rithm BKFIL takes into account the fact that these projections have been 

modified by the factor e11s(;,e) before filtering and back-projecting. 

The point s. which can be positive or negative, is the intersection 

nearest the detector of the line E; + xsine- ycose = 0 with the convex 

set n. 

The modified transform A
11 

has three important properties that 

simplify evaluation (15). First, an integration is not required to 

evaluate the argument in the exponential factor; second, the integral 

in (15) is independent of detector location; and third, the integral in 

{15) is independent of the boundaries of the attenuator. One can think 

of the detector as being placed at the center of rotation in the coordinate 

system shown in Fig. 2. Photons emitted to the left of the central axis 

will be attenuated as usual with a reduction in the measured number, 

whereas photons emitted to the right of the central axis will be increased 

in number as if they were experiencing a negative attenuation coefficient. 

III. THE ATTENUATED BACK-PROJECTION OPERATOR 

An important aspect in the BKFIL algorithm of (6) is the attenuated 

back-projection operator B11 given in (7) which, by expanding the dot 

products, can be rewritten as 



b (x,y) 

2TI 

J 
-]Jxcose ~ ]Jysine 

g(~xsine + ycose,e) e de ( 16) 

0 

This operator assigns a value for the point (x.y) that is the summation 

of the projection values for all projection rays passing through the same 

po·int (x,y) weighted by the attenuation factor e-lJxcose -]Jysine. In TCT 

the bac projection operator does not have this exponential factor and 

requires only integrating over TI. 

If the modified projections in (15) are back-projected before 

ng. the result is an image equal to the true image convolved 

with a space-invariant kernel [2]: 

= p(r) ** JL cosh(lJr) r ~ 
( 17) 

If JJ = 0 this back-projection image is just the true image convolved with 

2/r. This fact leads to an efficient Fourier filter algorithm that can 

deconvolve the back-projection image to obtain a reconstruction [20]-[22]. 

However. for single-photon ECT an algorithm cannot be devised since the 

back-projection image in (17) does not have a finite Fourier transform. 

In the next on we will show how the attenuated back-projection 

tor leads to a description of the point spread function for the BKFIL 
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IV, THE FILTER FUNCTION AND THE RESULTING POINT SPREAD FUNCTION 

In the contemporary reconstruction process, a filter is applied to 

the frequency components of the projection data after which the data are 

' inverse Fourier transformed and back-projected to form the image (BKFIL 

algorithm); or, equivalently, a convolver is applied to the projection 

data after which the result is back-projected. Two important convolution 

functions were developed by Ramachandran and lakshminarayanan [5] and 

Shepp and Logan [6]. These methods of filtering the projection data are 

now used in most commercial x-ray scanners and positron emission tomographic 

systems because of their computational efficiency and because the filter-

ing method requires very little computer memory. In this section we 

will show how the filtering method extends to single-photon ECT in the 

presence of a constant attenuation coefficient. 

For constant attenuation the BKFIL algorithm gives the following 

reconstructed image: 

2TI oo 

=!I d8 , 
0 -00 

(18) 

where p is the reconstructed distribution, c(f) is a filter applied to 

the frequency components of the projection data t:J~ and CJ'~ 1 is the 

one-dimensional inverse Fourier transform. The equivalent implementation 

of (18) involves convolving the projection data with a configuration 

space convolver after which the back-projection operation is performed: 

2TI oo 

= f f 
0 -oo 

l -v<r,e > 
c (<r.e>~ t,:) p(~.8)dt,; e ~- d8. 

11 - -
(19) 
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A 

The reconstructed image p in (18) and (19) represents the original 

image convolved with a point spread function h~(r) that is a function of the 

attenuation and filter shape [8]. To prove this, we substitute (2) into 

(19) to obtain the following expression for the estimated reconstruction: 

A 

p(r) 

1 
~~<r,e > 

x e ~ ~ dt; d8 

( 
1 1 

~ r • e ) 
p(r') e o(t:-<(.~>)dr' 

Assuming all functions are integrable, we can rearrange the order of 

integration; integrate first with respect to t; to give 

p(r' 

, then this can be rewritten as 

p(r) p(r')h (r-r') dr' 
~- ~ ~ ~ 

(20) 

(21) 

(22) 

Thus the reconstruction p is the convolution of the original image with a 

space invariant point spread function h~ equal to the back-projection of 

the convolution function c~. 

Ideally, we choose the convolution function c~ so that its back­

projection h~ is a delta function. However, it is unrealistic and unnatural 

to force the solution to c~ to be based on a perfect delta function response. 

In practical applications with a finite number of projections sampled at 

a fini number of points, the discrete back~projection of c~ can only 



-12-

approximate a delta function, and the function h~ is referred to as the 

point spread function of the reconstruction procedure. Convolvers with 

point spread functions closely approximating a delta function give very 

good spatial resolution but tend to amplify statistical fluctuations in 

the data so that contrast resolution deteriorates. 

If the point spread function is isotropic, for example, it may be 

represented as a Gaussian; then for continuous sampling, the convolution 

function c~ is the solution to the integral equation 

de (23) 

For~= 0, (23) is known as Schlomilch 1 s integral equation [23], and if 

h
0

(r) has a continuous derivative, c0 (~) is given by 

2rr 

TI/2 

+ 2; I h,; (l;si ne) de 
0 

(24) 

Tanaka and Iinuma [24] give an expression for c when h is a Gaussian 
0 0 

tJOint spread funct·ion. By using a least squares approach we solved (23) 

for various attenuation coefficients to give the convolution functions 

and corresponding filters shown in Fig. 3 [2]. Another method of 

solving (23) for the convolution function c~ is to expand both h~ and c~ 

in a power series and equate their coefficients. This was done for a 

Gaussian point spread function in [2] and [25]. 

Our approach here is to characterize the filter as 

(25) 
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0 2 4 6 8 10 
Dista nee 

XBL803=3189 

Fig, 3, Convolvers in (b) evaluated by a least-squares fit of (23) for v = 0.075, 
0.0958, 0.15, 0.18 (projection bin widths)- 1

• The point response function hv was 
determined by back-projecting over 360° using (3) and v = 0, 360 equal projections 
of the Ramachandran and lakshminarayanan convolver (36) into a 64x 64 pixel array, 
In (a) are shown the filter functions that are the discrete Fourier transform of 
the convolvers in (b). 
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and relate the window function w to the point spread function h . Several 
. . ~ ~ 

classes of window functions have been applied to computed tomography: 

Butterworth [7]~ Hann and Hamming [7], [26], Parzen [7], Shepp and Logan 

[27], a cosine filter [28], a Wiener type (minimum mean squared error 

filter) [29], [30], and the rectangular window [7] which when applied to 

the basic ramp filter results in a sharp cut-off. These windows and their 

characteristics are well known in signal processing [e.g., see Refs. 31, 

32]. The purpose of these windows applied to the basic ramp filter is to 

minimize the artifacts caused by noise in the projection data. The selec­

tion of a specific filter is based on some criterion (usually visual} of 

optimizing resolution and minimizing noise in the reconstruction image. 

In Section V we show that these filters can be modified to accommodate the 

presence of constant attenuation in single-photon ECT. For single-photon 

ECT, the noise propagation vs. resolution properties of the window func-

tion are complicated by the effects of attenuation. Thus the window 

functions must be designed not only to give a narrow central window to in­

sure adequate resolution but also to minimize the effects of attenuation 

and noise" 

In ) we saw that the reconstructed image represents the origi-

nal image convolved with a point spread function h~(r) that is a function 

of the attenuation and filter shape. Taking the inverse Fourier trans­

form of (25) and substituting it into (23), we see that the point spread 

function can be expressed in terms of the window function w~(f): 

CTI 00 

h~(r) = ~ ~ If! w~(f) e2nifr sine df e-~r case de. (26) 
0 -oo 
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Assuming that all functions are integrable~ we rewrite (26) so that the 

first integration is with respect to e: 

h ( r) 
f1 

()() 

-oo 

/f/ w (f) 
f1 

2rr J e2Tiifr sine- w cos e dSdf. 

0 

Integrating over e gives [9] 
co 

zrrf /£1 wll(f) J
0

(2TirJ£
2

-f1
2 /'4;2) df 

-co 

( 27) 

(28) 

where J 0 is the zeroth order Bessel function. If the window function 

is chosen so that w(f) is zero for !fl < ll/2TI and w{-f) = w(f) for 

/fl > f112rr, we can rewrite (28): 

00 

2rr J 2£ wll (f) J 
0 

(Zrrr 

ll/2Tf 

Making the change of variables s = 

co 

gives 

hll(r) 2Trf 2wll([s 2 + f1 2 /4rr 2 ]~) J
0

(2rrrs) sds , 

0 

{ ( 2 2 2 ~) } "' :1C 2wll [ s + f1 /4rr ] ; r 

where Jf is the Hankel transform [33], 

(29) 

(30) 



V, WINDOW AND FILTER FUNCTIONS 

The relationship between the integrable window function w and the 

point spread function h in (30) makes the following two assumptions: 

( i ) 

Assumption (i) correlates with the numerical results of the least-square 

fits in F·ig. 3~ where for 1J = 0.15, 0.18, the filters c(f) (=jfjwlJ(f)) 

bend away from the ramp function and approach zero at the low frequencies, 

The shapes of example window functions that we will describe are shown in 

Fig, 4. Besides having a minimum cut-off frequency of 1J/2n, they also 

have a maximum cut-off frequency fm"' 0.5. We will see that in addition 

to assumption (i), these windows differ from those in [11] in that the 

frequency has been replaced by (f 2
- 1J 2 /4n 2 )~. We will also give a 

modification of the Shepp and Logan [27], Gaussian [9], and Butterworth 

[11] window functions. 

The lters: HAN, HAM, PARZN, RAMP (Fig. 5a) are obtained by 

mul ply·ing the ramp function by the window functions in Fig, 4: Hann, 

Hamming, Parzen, Rectangular, respectively" Figure 5b gives the graphs 

of the convolu on functions that are the inverse Fourier transform of 

the filter functions given in Fig. 6a. Due to assumption (ii). the 

fi.lters are symmetric real valued functions. Therefore. the inverse 

Fourier transform of the filter ~~· equal to the convolution function ell. 

can be simplified: 
00 

c~(x) = 2 ;· clJ(f) cos(2n fx) df 
0 

( 31 ) 
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angu lor 

0 

requency 

XBL803-3l96 

Fig. 4. These window functions are multiplied by a ramp function 
giving the filters shown in Fig. 5. 



18~ 

0 4 
Dis nee 

g. 5. (a) is the result of multiplying the window functions in Fig. 4 
by a ramp function with a cut~off frequency of fm = 0.5. The inverse 
Fourier transforms of the fil in (a) give the real space convolution 
functions in (b). 
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.. 

F 

00 

XBL802-3095 

Fig, 6. The GAUSS filter for FWHM = 0.25, 0.50, 1.00, 3.50 projection 
bin widths; attenuation coefficient~= 0.05 (projection bin widths)- 1 ; 

and a lower cut-off frequency of ~/2n and an upper cut-off frequency of 
fm = 0.5. 
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The distance between 0 and the first zero of the convolution function 

is a measure of the resolution properties of the convolver, Ideally, for 

good resolution, the convolution function should have a central lobe that 

is tall and narrow. The side lobes give rise to artifacts that are 

contamination from adjacent parts of the reconstruction. The side lobes 

amplify statistical fluctuations in the data if the lobes and data 

fl tions occur at corresponding positions, Decreasing the amplitude 

of the side lobes will dampen the noise amplification, but such suppression 

will come at the cost of resolution, 

Our approach uses frequency space operations, The numerical 

application samples the filter c~ at discrete points and multiplies 

these by the discrete Fourier transform of sampled projections. The 

other approach is to sample the convolution function c~ and convolve this 

with the sampled projections by assuming that the convolution function is 

piece-wise linear between the points c~(2kfm), k=0,1,2,,, The two 

approaches give basically equivalent results for an adequate number of 

samples, However, due to the discrete implementation of the Fourier 

transform. the exact numerical resul differ by a small constant [28], 

The analytic expressions for the frequency filters and the corre­

sponding real space convolution functions are shown below. 

1) £ectangular Window and RAMP Filter. The rectangular window is 

defined by the equation 

w~(f) (32) 

otherwise 

where fm is the maximum cut~off frequency, 
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otherwise 

Taking the Han transform 2w~(s) gives a point spread function 

(34} 

and r"" 0, h~(O) "'2Tr[f~- l//4Tr2
]. In (34L J 1 is the first order 

se1 function. The width of the central window for this point spread 

function becomes wider as the attenuation coefficient increases. However, 

the attenuation coefficients used in nuclear medicine, 0.0958 ~ ~ ~ 
-1 • 

0.18 em , the difference 1n the width of the central window is insignificant, 

reconstruction artifacts arise for~> 0.10 cm~ 1 are due to the 

cal methods which attempt to approximate h~ in (34). Note also 

that the image cannot be restored for attenuation coefficients greater 

than fm. 

Multiplying the rectangular window by the ramp function in frequency 

gives the RAMP filter 

otherwise 

The inverse Fourier transform of the RAMP filter gives the convolution 

function 



(35) 

proposed Ramachandran and Lakshminarayanan [5]: 

( k) 1 if k odd , (36) 

0 if k even 

The RAMP (Fig. 5) gives the best resolution in the reconstructed 

ima data but ampli es noise for data with statistical 

uctuations. The sharp of the rectangular window gives a convolver 

a narrow 

t 

on 

poi 

given in 

1 window but si 1 

This ves se i 

and HAN 

which continue to oscillate 

ity oscill ons in regions 

facts in the reconstructed image. 

The Hann window is defined by the 

otherwise (37) 

the HAN lter~ and the convolution function are 
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[f~-~//4TI 2 ]~ 

hll(r) " 2~ ~ 2[0,5 + 0.5 cos(~s/fmll ,J0 (2~rs) sds 

0 

~ll(f) 

c (x) 
ll 

).l/2TI 

which for ll = 0 reduces to 

+ 

otherwise 

(38) 

(39) 

(40) 

(41) 

For the Hann window the central lobe of the convolution function 

ell is wider than the central lobe of the corresponding convolution 

function for the rectangular window, but its side lobes are greatly 

reducedo Therefore, the reconstructed image has a smoother texture 

(less artifact) with a loss in resolution. The HAN and RAMP filters can 

be made to correspond closely to one another in shape and in image 

reconstruction results if the frequency parameter fm of the HAN filter 
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is set to two times the cut-off frequency of the RAMP filter. 

3) Ji~mmin_g~J!_:Lndow and HAM Filter. The Hamming window is defined 

by the equation 

otherwise . 
(42) 

The point spread, the HAM filter, and the convolution function are 

(43) 

otherwise 
(44) 

(45) 

which for 11"' 0 reduces to 
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(46) 

The HAN filter has smaller extreme values in the side lobes than 

does the HAM filter~ and the width of the central lobe is greater. 

4) Parzen Window and PARZN Filter. The Parzen window is defined 

by the equation 

( 

2 2 2 ~)
2 

( [f 2 ~ 11 2 j4TI 2 ]~) l ~ 6 [ f ~Jl ~:TI ] 1 - ~-'fm 

0 otherwise . (47) 

The point spread~ the PARZN filter~ and the convolution function are 



hll(r) 

~]J (f) 
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21T 

4 
2m+5 b2m+2 12 a 2 2m+S - --- +-

f3 2m+2 fm 
m 

2m+3 
24 b2m+4 b 

--~ 2 + 2m+3 
fm 

2m+4 

2m+4 
a 
-~ 

2m+4 

16 b 2m+5 l 
fr 2m+5 m 

(48) 

1£1-61£1 ([f' ~~'/4~_'/'Y (1- [t' -f~'!4n'J") 

0 

2 ~]J (f) cos (2/Tfx)df 

]J/ 21T 

if ll I 21T ~ I f I ~ f ml 2 

otherwise (49) 

(50) 

which for ll "' 0 reduces to 

[481Tf X COS 21Tf X - 96 sin 21Tf X - 961Tf X COS'fT f X m· m m m m 

(51 ) 
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The central lobe of the Parzen window is about 30% wider than either 

the Hann or Hamming window, so the reconstructed image resolution is less 

than can be achieved with the HAN or HAM filter. On the other hand. the 

PARZN filter has good noise suppression. 

5) Shepp and Logan Window ~nd SHLO Filter. The Shepp and Logan 

window is defined by the equation 

s i n [ TI ( f 2 
- 1//4n 2 

) ~I 2 f m] 

n(f 2 -J.//4n2 2fm 

0 otherwise 

The point spread, the SHLO filter, and the convolution function are 

given in the 

2 2 2):k r If I sin [ TI ( f - 11 /4n 2/2f m] 

n(f 2 
- ]1

2/4n 2 2fm 

0 otherwise 

f sin[n(f2 
- 11 2 /4n 2 )~/2fm] 

cos(2nfx) df 
TI(f 2 

- ]1
2 /4TI 2 2fm 

(52) 

(53) 

(54) 

(55) 



which for 1J = 0 reduces to 

Llf 2 , m 
2 1T 
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sin(21T xfm) 

- 4fmx 

l + sin(21T xfm) J 
+ --~----~-

1 + 4fmx 
(56) 

For ]1"'0~ fm=0.5, and x = ···~-2,-l,O,ls2,,,. 9 this gives the Shepp and 

Logan convolution function [6]: 

2 if k::: 0 1T2 

c(k) "' 

2 if k t 0 
1T 2 

( 1 - 4k 2) 

6) Gaussian Window and GAUSS Filter. The Gaussian window is 

defined by the equa on 

I 
exp[-1T(f2 - 1l I 4'fr 

2 ) o 2 
] if 111 21r < I f I < f m 

wJ1(f) = 

0 otherwise 

where fm is the cut-off frequency and 8 is a resolution parameter. 

The point spread function is 

00 00 02n 2m+n[c2 214 2Jn+m+l 
1T Im - 1J 1T 2m 

r 
n! (m!) (n+m+l) 

(57) 

(58) 

(59) 
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where 2 2 2 2 2 h (0) = [1-exp{-rro [fm·-lJ /4rr ])]. 
1J 6 For fm = oo this reduces 

to the Gaussian distribution 

The full-width at half maximum (FWHM) of the point spread function in 

(60) is related to the parameter 6 by the equation 

rr ( FWHt~) 2 

4£n(2) 

(60) 

( 61 ) 

In Sect·i on VII, we wi 11 use FWHM as the resolution parameter even though 

the full-width at half maximum of h
11

(r) equals FWHM only if we sample 

infinitely fine. The GAUSS filter and convolution functions are 

I I 2 2 2 2] f exp[-rr(f - 1J /4rr )6 

0 otherwise 

1J/2Tr 

(62) 

(63) 

As FWHM increases, the GAUSS filter is shown in Fig. 6 to deviate 

more and more from a ramp filter. Increasing FWHM causes the resolution 

to deteriorate. However, increasing FWHM suppresses statistical 

fluctuations. 
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7) Butterworth Window and SUTER Filter. The major advantage of 

the SUTER filter is that it can be modified according to the amount of 

noise in the projection data. The filter is derived by using the square 

of the magnitude of the Butterworth filter as a window function 

wll(f) 
(64) 

where fm is a frequency parameter and n is the order of the filter. 

Th·is is multiplied by the ramp function giving the BUTER filter 

if I 
(65) 

The shape of the filter is determined by fm and n where n can be any 

rea 1 va 1 ue. A va 1 ue for n may be in the range of 5 to 350 and a va 1 ue 

for fm between 0.25 and 1. 

The filter is designed by calculating the appropriate window widths 

between 0 and fp and the corresponding transition bands between the 

pass~band frequency fp and the stop~band frequency fs as illustrated in 

Fig. 7. If the values of c, A. fp and fs are known for a particular 

window, then the parameters n and fm of the Butterworth filter are 

determined using the equations [32] 

f "" m 

(66) 

( 67) 
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The window defined by (64) can be designed so that it has either a 

narrow transition band between fp and fs, thus approaching a rectangular 

window, or a wide transition band such as the Hann or Hamming window. 

A window function with a narrow transition band in frequency space is 

equivalent to having a narrow central lobe for the point spread function, 

which means that the reconstruction will have good resolution with high 

statistics, but concurrently the side lobes for such a window function 

are larger, thus amplifying noise for low statistics. On the other hand, 

a wider transition band gives poorer spatial resolution with reduced noise 

amplification. 

8) Wiener Window and MMSE Filter. Thus far we have discussed filters 

varying in noise suppression, resolution, and attenuation coefficient. The 

shape of the filter also depends on the object to be reconstructed. A more 

flexible filter than those presented thus far has a frequency response 

that can accommodate both the frequency spectrum of the object to be 

reconstructed and its noise level. Such a filter, minimizing the error 

between the true image and an optimum linear estimate of the true image, 

was derived for 1J = 0, based on the solution of the Wiener-Hopf equation 

[29],[30]. The modification of this filter for ]J> 0 is 

(68) 

where m is the mean of the projection data, s is the power spectrum of 

the projection data (estimated by the square of the Fourier transform), 

andy is a weighting factor on the noise-to-signal term of (68). This is 

the MMSE filter which is equal to the Wiener window multiplied by the 

ramp function If!. 
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1 (f) 

1 

f 

XBL803 1 

Fig. 7. Method of designating a Butterworth filter. The parameters s 
and A are calculated from ordinates at the selected pass frequency fp 
and stop frequency f5 . The window function has a lower cut-off frequency 
of JJ/2rr. 
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VI. STATISTICAL FORMULAS FOR FILTERING METHODS 

For variable attenuation, errors in the reconstructed image are the 

result of statistical fluctuations in both transmission and emission 

data [2]. For constant attenuation, the noise propagated by the convolu­

tion algorithm is the result of statistical fluctuations only in the 

emission data. If these fluctuations are statistically independent and 

Poisson distributed, the estimate of the variance and mean for the random 

variable of each projection is the measured projection value: 

Therefore, the estimates for the mean and variance of the modified 

projections in (15) are 

11S(~,e) 
E{p(~.e)} = p(~.e) e 

Making the assumption that our data samples represent independent 

Poisson random variables, we will give expressions for the mean value. 

variance, percent root-mean-square (%RMS) uncertainty, and covariance 

functions using (70) and (71). 

Using the formula 

(69) 

(70) 

(71) 

( 72) 

the mean value function mp(~) for the reconstruction, expressed in terms 

of the measured projections, is 
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(73) 

The variance function for the reconstructed image is by definition 

For independent projection samples, this reduces to [34] 

Thus, in terms of the projection data. the variance function is 

With the results in (73) and (76), the %RMS uncertainty in the 

reconstructed image is 

%RMS uncertainty(r) 

lOO[B2~{c~(~) 2 *(p(~.e) e 2~8(~.e)J}]~ 

B~{c~(~) * [p(~,e) e~B(~,e)J} 

(74) 

(75) 

(76) 

(77) 

(78) 

Note that the %RMS uncertainty is a function of position in the transverse 

section. 

The autocovariance function, 

(79) 

gives a measure of the "texture" of the reconstructed noise. For single-

photon ECT with constant attenuation this reduces to 
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(80) 

When .!) = _::2 in (80), the autocovariance is equal to the variance given by 

(75). Below, we examine the noise properties and covariance functions 

for a simple point source distribution and a distributed circular disc 

source. 

1) Point Source Ima~. For a point source image p(x,y) = 

o(x- x
0

) (y- y
0
), the measured projection, the mean, the variance, and 

the covariance functions follow from (15)~ (73), (76), (80): 

p(~,E!) ""' e ( 81 ) 

0 

2'IT 

f ell [ ( j ~ ~ , ~ > J 
0 

e 

(82) 

d8 (83) 

(84) 
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If ~0 = 0, the mean value function mp(~) is just the point spread 

function h~ given by (23) and the variance is the back-projection B2~ of the 

uare of the convolution function multiplied by the exponential factor 

e~S(O,e). Thus, the average value in (82) is very local, whereas the 

variance (83) has a much larger extent. 

radius R and attenuation coefficient ~. the measured projection, the mean, 

and the variance functions are 

2 2 :k 
-v(R -£: ) 2 

2 c . 2 2 !z 
e TIR 2 ll Slnh(~(R -£; ) ] 

p(~,e) 

0 other~tli se 
(85) 

(86) 

where C is the total emitted photons over the disc. 

For a circular disc the %RMS uncertainty defined by (77) is given by 

:k 

%RMS uncertainty = (~)
2 

(88) 

where A represents the factors not including C after dividing (87) by 

t~e square of (86) and multiplying by 10
4

. The square of the %RMS 

uncertainty is inversely proportional to the total emitted photons. 

Since the emitted and the measured photons are related by a constant 
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attenuation factor independent of c. (88) is also valid if we interpret 

C to be total measured photons. 

VII. RESULTS 

Reconstructions of simulated data were performed using the BKFIL 

algorithm expressed in (18) and illustrated in Fig. 8. The algorithm used 

the GAUSS filter function (see (62) and Fig. 6). For small values of FWHM, 

the GAUSS filter corresponds to the ramp filter. Large values of the FWHM 

for the GAUSS filter correspond to a roll-off implemented by the HAN, HAM 

and PARZN filters. Remember that the full-width-at-half-maximum of the 

point spread function for the GAUSS filter approximately equals FWHM. 

The full-width-at-half-maximum can equal FWHM only if projection samples 

are continuous both laterally and in angle. 

The hot spot phantom in Fig. 9 was used to simulate the resolution 

capabilities of the filters. The phantom is 20 em in diameter, represented 

by a 128x 128 pixel array with l .56 mm per pixel. The phantom was 

reconstructed from 180 projection angles over 360°. The projections 

had bin sizes equal to the pixel size and were evaluated using analytically 

calculated line integrals. 

The data, which conformed to the projections given by (15). were 

reconstructed for~= 0.15 cm- 1 and~= 0.25 cm- 1 using the GAUSS filter 

parameters FWHM = 0.25, 1.00, 3.50, and 6.00 projection bin widths (pbw) 

(0.04, 0.16, 0.55, 0.94 em). For~= 0.15 cm- 1 the resolution of the 

reconstructions deteriorates as FWHM increases. -1 
For~ = 0.25 em the 

results are somewhat opposite than that of~= 0.15 cm- 1
• The resolution 
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BACK~PROJECTION OF FILTERED PROJECTION 
ALGORITHM 
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Fig. 8. Back~projection of filtered projection algorithm (BKFIL). 
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EMISSION SOURCE IN A CONSTANT ATTENUATOR 

14 mm 
(3 5 cham) 

16 rnm 
(4 mrn dmm) 

12 !Hill 

(3 mm cliam} 

20 mm 
(5mm d1am) 

10 mm 
(2 5 mrn dtam ) 

25 n1m 

1----- 200 mm ~ 

Reconstruction Using GAUSS Filter With 
Back-projection of Filtered Projection Algorithm 

p. = 0.15cm- 1 p. = 0.25cm- 1 

XBB 804-4068 

Fig. 9. Reconstructions of a 20-cm hot spot phantom. The pixel and 
projection bin sizes are 1.56 mm. The phantom was reconstructed by 
applying a GAUSS filter with FWHM = 0.25, 1.00, 3.50 and 6.00 projection 
bin widths to 180 projections equally sampled over 360°. 
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improved as FWHM went from 0.25 to 3.50 pbw, but again showed a blurred 

image for FWHM ~ 6.00 pbw. 

Simulations were performed whereby the hot spot phantom was blurred 

by the point spread function for the ramp filter given in (34). The point 

spread function did not blur the image except for high attenuation coeffi­

cients (~ ~ TI pixel- 1
). Thus, these simulations did not correlate with 

the reconstruction results in -1 g. 9 for~= 0.25 em and FWHM = 0.25 pbw. 

To investigate this discrepancy, the hot spot phantom was reconstructed 

with 360 and 720 projection angles. The results in g. 10 show consider­

able improvement with increase in the number of angles. For the higher 

attenuation coefficient of~ = 0.25 cm- 1 
9 the results in Figs. 9 and 10 

suggest that a ramp-type filter amplifies aliasing artifacts caused by 

insufficient angular sampling, but by rolling off the filter or increasing 

angular sampling, this amplification is reduced. Such aliasing artifacts 

in TCT have previously been analyzed by Crawford and Kak [35]. 

The application of these filters to biological problems such as 

reconstructing 99mTc distributed in the head were simulated using the 

Shepp and Logan head phantom [6], The phantom is represented by a 64 x 64 

array with 0.33 em per pixel, The 360 projections over 360° were 

evaluated using analytically calculated line integrals with an attenuation 

distribution as shown in Fig. 11. The projection data were then modified 

as shown in step 2 of Fig. 8 using (15) and assuming a constant attenuation 

coefficient of 0.149 cm- 1
• These modified projections were reconstructed 

using the GAUSS filter with F1tJHM = 0.25, 0.50, 1.00, 2.00, 3.00 and 3.50 

projection bins widths corresponding to 0.08, 0.16, 0.33, 0.66, 1.00, 

and 1.16 em, respectively. The results show the expected blurring as the 
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Attenuator Emission Source 

F" .1526 crii 1 

1 
19.5cm 

J 
f--14.7cm ---J 

Reconstruction Using GAUSS Filter With 

Back-Projection of Filtered Projection Algorithm 

FWHM- .25 FWHM -.50 FWHM -1.00 

FWHM- 2.00 FWHM- 3.00 FWHM- 3.50 

XBB 804-5034 

Fig. 11. Head simulation. The simulated projection data were attenuated 
using the Shepp and Logan head phantom shown in the upper left figure. 
The 360 projections of 1° increments were reconstructed assuming a constant 
attenuation coefficient of v = 0.149 cm- 1

• 
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point response function becomes wider (i.e., increase in high frequency 

cut-off). Note that no serious artifacts arose despite the variation in 

attenuation of bone, gray matter, and white matter. 

A circular disc of 20 em in diameter with a resolution of 0.33 em 

per pixel was chosen to simulate the propagation of errors for the BKFIL 

algorithm (Fig. 12). The disc was reconstructed from 36Q projection 

angles over 360°. The projections had bin sizes equal to the pixel size 

of 0.33 em. The projection data were evaluated using analytically 

calculated line integrals with Poisson noise whose mean and variance 

were equal to the measured line integral. The projection data were then 

modified as given by (15) and the reconstruction followed the scheme used 

above and depicted in Fig. 8. 

These data were reconstructed for various statistics using the 

GAUSS filter for FWHM = 0.5, 2.00, 3.5 pbw and fl = 0.075, 0.0958, 0.149 

0.18, 0.25 cm- 1
• The results for FWHM = 0.50, 3.50 pbw and fl = 0.0958. 0.149, 

0.18 cm- 1 are shown in Fig. 12. As expected, the filters with FWHM = 0.05 

pbw amplify the noise at low statistics and high attenuation coefficient, 

resulting in reconstruction artifacts. By rolling off the ramp (i.e .• 

FWHM = 3.5 pbw) this amplification is reduced. 

The %RMS uncertainties for the reconstructions in Fig. 12 are 

tabulated in Table 1 using the equations 

(89) 

i,j E il 

2 
(J (p) (90) 

i,j E fl 
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%RMS uncertainty = 100 cr(p) 
p 

where N is the number of pixels sampled for the region of interest A 

with reconstruction values p ... It is assumed here that the sample 
1J 

average over the disc closely approximates the spatial average. The 

( 91 ) 

results indicate that the %RMS uncertainty 1) decreases with an increase 

in the total measured photons for each attenuation coefficient; 

2) increases with an increase in the attenuation coefficient for the 

same measured photons; and 3) decreases with an increase in FWHM for 

the same measured photons and the same attenuation coefficient. These 

simulations show that the contrast resolution is a function of attenuation 

coefficient. statistics. and filter shape. 

The values for the constant A in Table 1 were obtained for each 

attenuation coefficient~ and filter parameter FWHM by fitting the tabulated 

data to (88). The variation in A for different attenuation coefficient 

distributions and filter shapes changes the plot of %RMS uncertainty vs" 

total measured counts shown in Fig. 13. It is not obvious what the 

functional relationship is between the %RMS uncertainty and the parameters 

~ and FWHM since the mean value function in (86) and the variance function 

in (87) depend in a more complicated way on ~ and FWHM than on C (the 

total measured counts). 
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TABLE l. %RMS uncertainties = 
!.,; 

(A/counts) 2 for the reconstructions 
in Fig, 12 0 

------~~----~~~ 

Attenuation Counts 
coefficient 

A/10 8 
(cm~ 1 ) 5 X 10 5 1 X 10 6 5 X 10° 1 X 10 7 

00 

FWHM = 0.50 

0.075 44.0 31.3 13.7 9.94 0. 77 9. 71 
0.0958 46.3 32.2 14.4 10.2 0.50 10.58 
0.149 92.6 65.6 26.9 20.1 1.47 42.45 
0.18 97.2 66.6 30.3 21.3 0.38 46.23 
0.25 244. 167. 73.6 52.3 0.48 289.63 

FWHM = 2. 00 

0.075 16.2 11.9 5.13 3.68 0.85 1.35 
0.0958 16.7 8.30 5.51 3.87 0.58 1.19 
0.149 33.9 23.2 9.94 7.60 1.56 5.60 
0.18 37.6 22.7 10.9 8.03 0.44 6.40 
0.25 90.1 59.6 27.3 19.2 0.53 38.74 

FWHM = 3.50 

0.075 7.87 5.64 2.80 2.29 1.59 0.331 
0.0958 7.88 6.16 3.03 2.39 1.52 0.335 
0.149 15.6 11.3 5.03 4.11 L 79 1.26 
0.18 18.0 10.7 5.39 4.16 1.58 1.48 
0.25 44.4 28.6 13.5 8.85 1.76 9.25 
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Fig. 13. Plot of %RMS uncertainty versus total measured counts. If the 
constant attenuation coefficient v and/or the radius of the attenuator 
increases, then the curve will shift upward, whe~eas if the resolution 
decreases the curve will shift downward. 
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VIII. CONCLUSION 

We have shown from computer simulations that fil ing methods us,:;:d 

in TCT and positron ECT apply also to single-photon ECT in the presence 

of a constant attenuation coefficient. In the case of TCT and positron 

ECT the filtering approach is derived directly from the Fourier projection 

theorem. For single-photon ECT, however, the Fourier projection theorem 

[16] does not permit a straightforward filtering approach without first 

interpolating the Fourier transform of each projection [14],[15]. In the 

case of single-photon ECT a space-invariant point spread function can be 

obtained using the BKFIL algorithm by a simple modifi on of the filter 

and back-projection operator. 

The filters are zero for frequencies less than ~/2n and greater than 

fm cycles per projection bin. For the ramp filter the point spread 

function for continuous sampling is 

(2TI zr) 
h~(r) r 

(92) 

where z = [f
1
; - ~ 2 /4Tr 2 ]!z. This point spread function gives insight 

into the response of the BKFIL algorithm for different attenuation 

coefficients. For the factor z to be greater than zero, fm must be 

greater than 1l/2TI. Therefore 9 if f m is set so that the samp 1 i ng cri on 

is met~· i.e., the sampling interval is l/(2fm) ~then the image cannot 

be reconstructed if the projections have been attenuated by a coefficient 

greater than 2Tifm (~ < 2Tifm), Put another way, if the attenuation coeff·i­

cient is~= 0.15 cm- 1
, then the sampling interval must be at least 

20.9 em. This seems to a somewhat trivial requirement since all 
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scintillation cameras have a resolution much finer than this. However, 

it does reveal the interplay between the attenuation coefficient and 

sampling requirements. An implication of (92) is the requirement that 

the sampling interval must decrease as ~ increases for a constant point 

spread function; i.e., to have the same point spread function as at 
2 2 k 

ll = 0, fm must increase as given by fm(~) = [fm(O) + ll /4TI ] 2 so that z 

remains constant. Recall that in the numerical implementation, fm = 0.5 

cycles per projection bin. Therefore, if the sampling interval is 

decreased, the value of ll in units of cycles per projection bin decreases. 

The point spread function for the ramp filter in (92) indicates 

that significant blurring should not occur for isotopes used in nuclear 
-1 medicine with attenuation coefficients between zero and 0.18 em 

Simulations have shown that for continuous sampling significant blurring 

does not occur until ll reaches 2Tifm. The numerical implementation of 

the BKFIL algorithm introduces errors that increase with attenuation, 

especially errors in the back-projection operation. The exponential factor 

in the attenuated back-projection operator (16) goes from a constant value 

at ll = 0 to an increasingly oscillatory function as ll increases. To 

numerically evaluate the back-projection integral, therefore, finer 

angular sampling is required as the attenuation coefficient increases. 

Rolling off the ramp filter dampens the aliasing artifacts that insuffi­

cient angular and lateral sampling produce. 

The statistical properties of the filtering method presented here 

are given by simple statistical formulas for the mean, variance, %RMS 

uncertainty, and the covariance function of the reconstructed image, The 

square of %RMS uncertainty is inversely proportional to the measured counts 
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(88). Simulations show that the constant of proportionality is a function of 

filter resolution characteristics, attenuation coefficient, and size of 

the cross-sectional image. 

Previous simulations have shown [2] that filtering methods are less 

precise than iterative methods~ possibly because iterative methods can 

simultaneously make adjustments in the solution based on information from 

all projections, whereas convolution methods modify only one projection 

at a time. Filtering methods, however, are much faster and cheaper to 

implement. 

An important application of this method of attenuation compensation 

is the reconstruction of radionuclide distributions such as 99mTc and 1231 

in the brain. Simulations show that variation in attenuation coefficients 

between bone, gray matter, and white matter do not present serious artifacts. 

The BKFIL algorithm can compensate for attenuation in single-photon ECT 

using an attenuation-dependent filter which reconstructs the transverse 

section reliably. The BKFIL algorithm requires two times more computer 

time if ll > 0 than if ll"' 0 due to the exponential calculation in the back­

projection operation. Thus, the computer time requirements are only two 

times that of conventional TCT or positron ECT, and there is no increase 

in memory requirements. 
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